Blind Source Separation by Adaptive Estimation of Score Function Difference
نویسندگان
چکیده
In this paper, an adaptive algorithm for blind source separation in linear instantaneous mixtures is proposed, and it is shown to be the optimum version of the EASI algorithm. The algorithm is based on minimization of mutual information of outputs. This minimization is done using adaptive estimation of a recently proposed non-parametric “gradient” for mutual information.
منابع مشابه
Blind Source Separation Using Maximum Entropy Pdf Estimation Based on Fractional Moments
Recovering a set of independent sources which are linearly mixed is the main task of the blind source separation. Utilizing different methods such as infomax principle, mutual information and maximum likelihood leads to simple iterative procedures such as natural gradient algorithms. These algorithms depend on a nonlinear function (known as score or activation function) of source distributions....
متن کاملParametric approach to blind deconvolution of nonlinear channels
A parametric procedure for the blind inversion of nonlinear channels is proposed, based on a recent method of blind source separation in nonlinear mixtures. Experiments show that the proposed algorithms perform efficiently, even in the presence of hard distortion. The method, based on the minimisation of the output mutual information, needs the knowledge of logderivative of input distribution (...
متن کاملAdaptive Blind Signal and Image Processing
In this book, we describe various approaches, methods and techniques to blind and semi-blind signal processing, especially principal and independent component analysis, blind source separation, blind source extraction, multichannel blind deconvolution and equalization of source signals when the measured sensor signals are contaminated by additive noise. Emphasis is placed on an information-theo...
متن کاملNew hyperbolic source density models for blind source recovery score functions
We present two new hyperbolic source probability models to effectively represent sub-gaussian and super-gaussian families of sources for dynamic and convolutive Blind Source Recovery (BSR). Both models share a common boundary for the gaussian density function. The proposed hyperbolic probability model for the sub-gaussian densities is an extension of the Pearson density model. The model can rep...
متن کاملCalculation of Leakage in Water Supply Network Based on Blind Source Separation Theory
The economic and environmental losses due to serious leakage in the urban water supply network have increased the effort to control the water leakage. However, current methods for leakage estimation are inaccurate leading to the development of ineffective leakage controls. Therefore, this study proposes a method based on the blind source separation theory (BSS) to calculate the leakage of water...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004